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Obsective We would like to find siete
Mai that represents F i e such that
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Why is this our dream

They provide examples of higher dimensional algebraic
varieties with a rich and interesting geometry

The study of moduli gives answers to problems

concerning the geometry of the objects of the family



By Yaneda lemma

Natural transformations

F1 HomgaliMa
FIM

suppose that we have 4 Ft ha al

AAB Io
FIAI I Ham A Ma

FIOI 8

FIBI F
Hom IB Ma

In particular if I take B Ma

A Man

IF tmn.mil

È Hanim



id

So consider the element F Mai that
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BadNEWI Such a scheme Man doesn't

exist

SLOGAL The presence of nontrivial

automorphisms prevent the moduli

problem from having a fine

moduli space

Intuition The curves 5 3 t and
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Two approaches to circumvent the problem

Restrict the class of obtects of our families

to eliminate automorphisms i e rigidify the

moduli problem

Machinery of Geometric Imerina Theory GIT

Mumford

Record the info about automorphism enlarging

the category of schemes to ensure representability

of the moduli functor



Solution We wanted a scheme Ma such that

we could identify the functor F with Man

This scheme doesn't exists
So we identify F with

F itself and
we call it Ma

So for every TE Sch Ma T is the grupoid

of elliptic curves
over T
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Why this is the solution to our problems
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Who is µ We are looking for

a morphism SIG Here we are identifying

the scheme 5 with the stack Hom sa
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so we can think to N as a natural transformation
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Romae These are not functors but pseudobunctors

But Yonedo works in this setting too
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Smooth in raid to be a stable property cause

given lay between schemes and a covering
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go
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A G fibration over is a scheme with an action

p Gx 4 and a G invariant morphism 4

Morphism defined in the obvious way

A G filmation in called trivial if it is isomorphic to the

G filenation pre G where the action obvious
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A principal G bundle
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locally trivial in the fpcg resp farlo étale Zariski
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the quotient morphism X is a



principal G bundle
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4 U is a principal G bundle too

Moreover α is G equivariant
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We also have a morphism
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and it is its coarse moduli space
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